miércoles, 8 de febrero de 2012

Contracción Lantánida

La contracción lantánida define a lo largo de la serie 4f de la tabla periódica (T.P.) la disminución progresiva del tamaño de los átomos y sus especies en estado (III) en función integrada de la carga nuclear y de las correcciones relativistas.

Dentro del bloque d de la T.P. que va desde el grupo 3 hasta el 12 podemos diferenciar tres series, que denominamos , y serie, también serie 3d, 4d y 5d, respectivamente.

Los metales de la y serie son muy similares, especialmente en los primeros grupos. Estas similitudes son el resultado de lo que se conoce como contracción lantánida. En el grupo 3, el ytrio (Y) y el lantano (La) muestran una química diferenciada que es consecuencia de los diferentes radios iónicos, energía de ionización, energía de solvatación, etc. Sin embargo, la inserción de los 14 elementos lantánidos entre el lantano y el hafnio (estructura electrónica general para un átomo lantánido en su estado fundamental:[Xe] 4fn 5d0 6s2 ;n = 1 a 14), lleva consigo un gran aumento de la carga nuclear efectiva; se están colocando electrones en los siete orbitales f, con la particularidad de que los electrones de estos orbitales penetran poco hacia el núcleo del átomo y proporcionan un apantallamiento débil frente a la atracción que ejerce el núcleo sobre los electrones situados en orbitales más exteriores.


ElementoCePrNdPmSmEuGdTbDyHoErTmYbLu
Configuración electrónica del átomo
(todos parten de la config. del [Xe])
4f15d16s24f36s24f46s24f56s24f66s24f76s24f75d16s24f96s24f106s24f116s24f126s24f136s24f146s24f145d16s2
Configuración electrónica del ion Ln3+4f14f24f34f44f54f64f74f84f94f104f114f124f134f14
Radio (pm) del ion Ln3+ (6-coordinado)1029998.39795.894.793.892.391.290.1898886.886.1

Por esto, en la intersección de la serie con el grupo 4, se reducen los radios, y las energías de ionización aumentan hasta valores cercanos a los del zirconio (Zr); zirconio y hafnio son muy parecidos, fue muy difícil el descubrimiento del hafnio, que pasaba desapercibido en minerales donde estaban conjuntamente ambos por sustituciones isomórficas (Niels Bohr fue el que predijo que el elemento de número atómico 72 debería ser muy similar al zirconio). Estos efectos se pueden ver a lo largo de la serie 4f -conjunto de los elementos lantánidos de cerio a lutecio- y se extienden a lo largo del sexto periodo de la T.P., conectando con los elementos del bloque p. El ejemplo más claro de esta contracción lántanida se detecta en la variación gradual del tamaño de los iones Ln (III), desde La (III) hasta Lu (III). Sin embargo, el perfil de la variación en los radios metálicos no es tan ideal debido a discontinuidades notables encontradas en europio e yterbio. Hay que resaltar que en el conjunto 5f, o elementos actínidos, también tenemos un sistema similar denominado "contracción actínida".

Debemos decir que la contracción lantánida tiene un 20% de peso atribuible al fenómeno conocido por efectos relativistas. La contracción lantánida tiene mayor potencia si se consideran los efectos relativistas directos de contracción para los orbitales exteriores s y p. Lo mismo habría que considerar para la contracción actínida.
La contracción lantánida y la actínida no son los únicos fenómenos de esta naturaleza en la T.P. relacionado con la carga nuclear efectiva y los efectos relativistas directos de contracción, sino que también se observa contracción atómica en series de la tabla periódica para otros periodos como en el 4º, generando en la serie del bloque d lo que podemos denominar como "contracción escándida". En esta contracción escándida no influyen efectos relativistas como los descritos, ya que estamos en la serie, o serie 3d del bloque d, donde tenemos elementos más ligeros y estos efectos son insignificantes.

lunes, 16 de enero de 2012

Biografía de Wolfgang Pauli

Wolfgang Pauli:

(Viena, 1900-Zurich, 1958) Físico austriaco, nacionalizado estadounidense. Con tan sólo veinte años escribió un artículo enciclopédico de más de doscientas páginas sobre la teoría de la relatividad. Nombrado profesor de la Universidad de Hamburgo en 1923, un año más tarde propuso un cuarto número cuántico, que puede adoptar los valores numéricos de ½ o -½, necesario para poder especificar los estados energéticos del electrón. Más adelante se verificó la existencia de estos números cuánticos, denominados de espín, representativos de las dos direcciones posibles de giro sobre el eje de rotación de los fermiones. En 1925 introdujo el principio de exclusión, que clarificó de forma inmediata la estructuración de los átomos en la tabla periódica.

En 1928 ingresó en el Instituto Federal de Tecnología de Zurich como profesor de física teórica. Bajo su dirección, esta institución se convirtió en un importante centro de investigación en los años precedentes a la Segunda Guerra Mundial.

A finales de la década de 1920 observó que cuando se emite una partícula beta (electrón) desde un núcleo atómico, por lo general se produce una pérdida de energía, lo cual constituye una flagrante violación de la ley de conservación de la energía. Para explicar el fenómeno, Pauli propuso en 1931 la existencia de alguna partícula –denominada con posterioridad neutrino por Enrico Fermi– eléctricamente neutra y de masa nula o prácticamente inapreciable, y cuya desaparición pasa inadvertida, dado que interactúa con la materia de forma muy débil. El neutrino no pudo ser detectado como entidad hasta 1956.

jueves, 12 de enero de 2012

Biografía de Henry Moseley

Henry Gwyn-Jeffreys Moseley:

(Henry Gwyn-Jeffreys Moseley; Weymouth, 1887 - Gallípoli, 1915) Físico inglés que demostró la relación entre el número atómico y la carga nuclear de los elementos, llamada en su honor Ley de Moseley. Procedente de una familia de científicos, realizó sus estudios en Oxford, donde obtuvo su título en 1910. Rutherford lo acogió bajo su tutela en Manchester; pero tan sólo estuvo dos años con él y volvió a Oxford.

Henry Moseley

Un año después, en 1914, ante el estallido de la Primera Guerra Mundial, marchó a Australia, y se alistó en el Royal Engineers como oficial de transmisiones. Moseley fue una de las muchas víctimas de la catástrofe. Encontró la muerte durante la campaña de Gallipoli, en el desembarco de la bahía de Suvla Bay, al recibir un disparo en la cabeza que le asestó un turco emboscado.

Moseley centró su actividad en el estudio de los rayos X, utilizando para ello los trabajos que sobre dichas radiaciones habían hecho otros científicos como Bragg y Von Laue, en los que habían demostrado, respectivamente, que los rayos procedían de los metales usados como anticátodo en los tubos de rayos X, y que las frecuencias de estos rayos podían ser calculadas por una técnica de difracción cristalográfica.

En 1913, el joven Moseley, que conocía este último método, se hallaba en Manchester intentando hallar la medición exacta de las longitudes de onda de los rayos X, pero prefería servirse de cristales, en lugar de rejillas de refracción, para producir una deflexión de los rayos dependiente de la longitud de onda. Probó con más de treinta metales -que incluían desde el aluminio al oro- como anticátodos, descubriendo que las ondas de rayos X variaban regularmente de posición al pasar de un elemento a otro, pero siempre siguiendo el orden que ocupaban en la tabla periódica.

Este patrón de variación le permitió establecer que el número que marca la posición de un elemento, en una serie ordenada, es el mismo que da la carga eléctrica del núcleo, es decir, que la carga nuclear era igual al denominado por el propio Moseley número atómico. La veracidad de estas teorías significaba poder determinar la carga nuclear de cualquier elemento, al igual que el número de electrones de su átomo, con sólo mirar el lugar que ocupaba en la lista.

El punto oscuro de la teoría (la ausencia de seis elementos en la tabla periódica) pronto se subsanó, ya que se descubrieron estos elementos desconocidos. La relación existente entre la frecuencia de los rayos X y su número atómico fue bautizada como Ley de Moseley.

miércoles, 11 de enero de 2012

Orbital f

F orbitals.png

Biografía de Erwin Schrödinger

Erwin Schrödinger:

(Viena, 1887-id., 1961) Físico austriaco. Compartió el Premio Nobel de Física del año 1933 con Paul Dirac por su contribución al desarrollo de la mecánica cuántica. Ingresó en 1906 en la Universidad de Viena, en cuyo claustro permaneció, con breves interrupciones, hasta 1920. Sirvió a su patria durante la Primera Guerra Mundial, y luego, en 1921, se trasladó a Zurich, donde residió los seis años siguientes.

Erwin Schrödinger

En 1926 publicó una serie de artículos que sentaron las bases de la moderna mecánica cuántica ondulatoria, y en los cuales transcribió en derivadas parciales su célebre ecuación diferencial, que relaciona la energía asociada a una partícula microscópica con la función de onda descrita por dicha partícula. Dedujo este resultado tras adoptar la hipótesis de De Broglie, enunciada en 1924, según la cual la materia y las partículas microscópicas, éstas en especial, son de naturaleza dual y se comportan a la vez como onda y como cuerpo.
Atendiendo a estas circunstancias, la ecuación de Schrödinger arroja como resultado funciones de onda, relacionadas con la probabilidad de que se dé un determinado suceso físico, tal como puede ser una posición específica de un electrón en su órbita alrededor del núcleo.

En 1927 aceptó la invitación de la Universidad de Berlín para ocupar la cátedra de Max Planck, y allí entró en contacto con algunos de los científicos más distinguidos del momento, entre los que se encontraba Albert Einstein.

Permaneció en dicha universidad hasta 1933, momento en que decidió abandonar Alemania ante el auge del nazismo y de la política de persecución sistemática de los judíos. Durante los siete años siguientes residió en diversos países europeos hasta recalar en 1940 en el Dublin Institute for Advanced Studies de Irlanda, donde permaneció hasta 1956, año en el que regresó a Austria como profesor emérito de la Universidad de Viena.

Biografía de Niels Böhr

Niels Böhr:

(Niels Henrick David Böhr; Copenhague, 1885 - 1962) Físico danés. Considerado como una de las figuras más deslumbrantes de la Física contemporánea y, por sus aportaciones teóricas y sus trabajos prácticos, como uno de los padres de la bomba atómica, fue galardonado en 1922 con el Premio Nobel de Física, "por su investigación acerca de la estructura de los átomos y la radiación que emana de ellos".

Cursó estudios superiores de Física en la Universidad de Copenhague, donde obtuvo el grado de doctor en 1911. Tras haberse revelado como una firme promesa en el campo de la Física Nuclear, pasó a Inglaterra para ampliar sus conocimientos en el prestigioso Cavendish Laboratory de la Universidad de Cambridge, bajo la tutela de sir Joseph John Thomson (1856-1940), químico británico distinguido con el Premio Nobel en 1906 por sus estudios acerca del paso de la electricidad a través del interior de los gases, que le habían permitido descubrir la partícula bautizada luego por Stoney (1826-1911) como electrón.

Niels Böhr

Precisamente al estudio de los electrones estaba dedicada la tesis doctoral que acababa de leer el joven Bohr en Copenhague, y que había llevado a territorio británico con la esperanza de verla traducida al inglés. Pero, comoquiera que Thomson no se mostrara entusiasmado por el trabajo del científico danés, Bohr decidió abandonar el Cavendish Laboratory y marcharse a la Universidad de Manchester, donde aprovechó las enseñanzas de otro premio Nobel, Ernest Rutherford (1871-1937), para ampliar sus saberes acerca de las radiactividad y los modelos del átomo.

A partir de entonces, entre ambos científicos se estableció una estrecha colaboración que, sostenida por firmes lazos de amistad, habría de ser tan duradera como fecunda. Rutherford había elaborado una teoría del átomo que era totalmente válida en un plano especulativo, pero que no podía sostenerse dentro de las leyes de la Física clásica. Borh, en un alarde de audacia que resultaba impredecible en su carácter tímido y retraído, se atrevió a soslayar estos problemas que obstaculizaban los progresos de Rutherford con una solución tan sencilla como arriesgada: afirmó, simplemente, que los movimientos que se daban dentro del átomo están gobernados por unas leyes ajenas a las de la Física tradicional.

En 1913, Niels Bohr alcanzó celebridad mundial dentro del ámbito de la Física al publicar una serie de ensayos en los que revelaba su particular modelo de la estructura del átomo. Tres años después, el científico danés regresó a su ciudad natal para ocupar una plaza de profesor de Física Teórica en su antigua alma mater; y, en 1920, merced al prestigio internacional que había ido adquiriendo por sus estudios y publicaciones, consiguió las subvenciones necesarias para la fundación del denominado Instituto Nórdico de Física Teórica (más tarde denominado Instituto Niels Bohr), cuya dirección asumió desde 1921 hasta la fecha de su muerte (1962). En muy poco tiempo, este Instituto se erigió, junto a las universidades alemanas de Munich y Göttingen, en uno de los tres vértices del triángulo europeo donde se estaban desarrollando las principales investigaciones sobre la Física del átomo.

En 1922, año en el que Bohr se consagró definitivamente como científico de renombre universal con la obtención del Premio Nobel, vino al mundo Aage Niels Bohr (1922), que habría de seguir los pasos de su padre y colaborar con él en varias investigaciones. Doctorado también en Física, fue, al igual que su progenitor, profesor universitario de dicha materia y director del Instituto Nórdico de Física Teórica, y recibió el Premio Nobel en 1975.

Inmerso en sus investigaciones sobre el átomo y la Mecánica cuántica, Niels Bohr enunció, en 1923, el principio de la correspondencia, al que añadió, en 1928, el principio de la complementariedad. A raíz de esta última aportación se fue constituyendo en torno a su figura la denominada "escuela de Copenhague de la Mecánica cuántica", cuyas teorías fueron combatidas ferozmente -bien es verdad que en vano- por Albert Einstein (1879-1955). A pesar de estas diferencias, sostenidas siempre en un plano teórico -pues Einstein sólo pudo oponer a las propuestas de Borh elucubraciones mentales-, el padre de la teoría de la relatividad reconoció en el físico danés a "uno de los más grandes investigadores científicos de nuestro tiempo".

En la década de los años treinta, Niels Bohr pasó largas temporadas en los Estados Unidos de América, adonde llevó las primeras noticias sobre la fisión nuclear -descubierta en Berlín, en 1938, por Otto Hahn (1879-1968) y Fritz Strassmann (1902-1980)-, que habrían de dar lugar a los trabajos de fabricación de armas nucleares de destrucción masiva. Durante cinco meses, trabajó con J. A. Wheeler en el Instituto de Estudios Avanzados de Princeton (Nueva Jersey), y anunció, junto con su colaborador, que el plutonio habría de ser fisionable, al igual que lo era el uranio.

De regreso a Dinamarca, fue elegido presidente de la Real Academia Danesa de Ciencias (1939). Volvió a instalarse en Copenhague, en donde continuó investigando e impartiendo clases hasta que, en 1943, a raíz de la ocupación alemana, tuvo que abandonar su país natal debido a sus orígenes judíos. Su vida y la de los suyos llegaron a estar tan amenazadas que se vio forzado a embarcar a su familia en un pequeño bote de pesca y poner rumbo a Suecia. Pocos días después, Bohr se refugió en los Estados Unidos y, bajo el pseudónimo de Nicholas Baker, empezó a colaborar activamente en el denominado "Proyecto Manhattan", desarrollado en un laboratorio de Los Álamos (Nuevo México), cuyo resultado fue la fabricación de la primera bomba atómica.

Al término de la II Guerra Mundial (1939-1945), retornó a Dinamarca y volvió a ponerse al frente del Instituto Nórdico de Física Teórica. A partir de entonces, consciente de las aplicaciones devastadoras que podían tener sus investigaciones, se dedicó a convencer a sus colegas de la necesidad de usar los hallazgos de la Física nuclear con fines útiles y benéficos. Pionero en la organización de simposios y conferencias internacionales sobre el uso pacífico de la energía atómica, en 1951 publicó y divulgó por todo el mundo un manifiesto firmado por más de un centenar de científicos eminentes, en el que se afirmaba que los poderes públicos debían garantizar el empleo de la energía atómica para fines pacíficos. Por todo ello, en 1957, recibió el premio Átomos para la Paz, convocado por la Fundación Ford para favorecer las investigaciones científicas encaminadas a la mejora de la Humanidad.

Director, desde 1953, de la Organización Europea para Investigación Nuclear, Niels Henrik David Borh falleció en Copenhague durante el otoño de 1962, a los setenta y siete años de edad, después de haber dejado impresas algunas obras tan valiosas como Teoría de los espectros y constitución atómica (1922), Luz y vida (1933), Teoría atómica y descripción de la naturaleza (1934), El mecanismo de la fisión nuclear (1939) y Física atómica y conocimiento humano (1958).


El átomo de Böhr:

Las primeras aportaciones relevantes de Bohr a la Física contemporánea tuvieron lugar en 1913, cuando, para afrontar los problemas con que había topado su maestro y amigo Rutherford, afirmó que los movimientos internos que tienen lugar en el átomo están regidos por leyes particulares, ajenas a las de la Física tradicional. Al hilo de esta afirmación, Bohr observó también que los electrones, cuando se hallan en ciertos estados estacionarios, dejan de irradiar energía.

En realidad, Rutherford había vislumbrado un átomo de hidrógeno conformado por un protón (es decir, una carga positiva central) y un partícula negativa que giraría alrededor de dicho protón de un modo semejante al desplazamiento descrito por los planetas en sus órbitas en torno al sol. Pero esta teoría contravenía las leyes de la Física tradicional, puesto que, a tenor de lo conocido hasta entonces, una carga eléctrica en movimiento tenía que irradiar energía, y, por lo tanto, el átomo no podría ser estable.

Bohr aceptó, en parte, el modelo de Rutherford, pero lo superó combinándolo con las teorías cuánticas de Max Planck (1858-1947). En los tres artículos que publicó en el Philosophical Magazine en 1913, enunció cuatro postulados: 1) Un átomo posee un determinado número de órbitas estacionarias, en las cuales los electrones no radian ni absorben energía, aunque estén en movimiento. 2) El electrón gira alrededor de su núcleo de tal forma que la fuerza centrífuga sirve para equilibrar con exactitud la atracción electrostática de las cargas opuestas. 3) El momento angular del electrón en un estado estacionario es un múltiplo de h/2p (donde h es la constante cuántica universal de Planck).

Según el cuarto postulado, cuando un electrón pasa de un estado estacionario de más energía a otro de menos (y, por ende, más cercano al núcleo), la variación de energía se emite en forma de un cuanto de radiación electromagnética (es decir, un fotón). Y, a la inversa, un electrón sólo interacciona con un fotón cuya energía le permita pasar de un estado estacionario a otro de mayor energía. Dicho de otro modo, la radiación o absorción de energía sólo tiene lugar cuando un electrón pasa de una órbita de mayor (o menor) energía a otra de menor (o mayor), que se encuentra más cercana (o alejada) respecto al núcleo. La frecuencia f de la radiación emitida o absorbida viene determinada por la relación: E1-E2=hf, donde E1 y E2 son las energías correspondientes a las órbitas de tránsito del electrón.

Biografía de Eugen Goldstein

Eugen Goldstein:

(Gleiwitz, 1850 - Berlín, 1930) Físico alemán. Colaborador del Observatorio de Berlín y del Instituto de Física Técnica, fue el descubridor de los rayos positivos o canales e introdujo el término «rayos catódicos». Estudió también los espectros atómicos.

Eugen Goldstein

Profesor de física en la Universidad de Berlín desde 1888, Eugen Goldstein llevó a cabo, con la ayuda de la Academia alemana de Ciencias, numerosos experimentos sobre las descargas eléctricas en el vacío que le llevaron al descubrimiento de los rayos canales. El estudio de las trayectorias de tales rayos conduciría en 1913 a Thomson y a Aston al descubrimiento de los isótopos. Goldstein hizo la primera comunicación de su descubrimiento a la Academia de Berlín en 1886 y prosiguió sus investigaciones sobre el mismo tema hasta aproximadamente 1915. En 1930 sus estudios, que se encontraban diseminados en publicaciones alemanas, fueron reunidos y publicados por Gehrcke con el título de Rayos Canales.

Goldstein observó que, al producirse una descarga eléctrica en un tubo que contuviera un gas rarificado, empleando como electrodo negativo (cátodo) una lámina metálica normal al eje del tubo y provista de unos agujeritos, se veían partir de los propios agujeros brillantes rayas rectilíneas dirigidas a la parte opuesta a la ocupada por el electrodo positivo (ánodo). Si el gas contenido en el tubo era aire, las rayas presentaban un hermoso color amarillo. La forma rectilínea hizo en seguida pensar en rayos que se propagasen en línea recta. Goldstein dio entonces a estas rayas el nombre de rayos canales, queriendo con ello significar que salían de los canales practicados en el cátodo.

Este curioso nombre (que debía ser provisional, en espera de que se revelase la naturaleza del fenómeno) se impuso en el uso y ha pasado al vocabulario científico internacional. Del hecho de que dos haces de rayos canales puedan cruzarse sin estorbarse, y del hecho de que no parecían influenciables por medio de campos eléctricos ni magnéticos, Goldstein excluyó que se pudiese tratar de partículas de materia cargadas de electricidad y lanzadas a grandes velocidades. Pero luego se demostró que tal punto de vista era equivocado, y hoy se sabe que los rayos están constituidos de partículas cuyo peso es del orden del átomo y que, formados en las proximidades del cátodo, atraviesan los agujeritos a velocidades altísimas, y continúan propagándose en línea recta por inercia.

Biografía de Ernest Rutherford

Ernest Rutherford:

(Nelson, Nueva Zelanda, 1871-Londres, 1937) Físico y químico británico. Tras licenciarse, en 1893, en Christchurch (Nueva Zelanda), Ernest Rutherford se trasladó a la Universidad de Cambridge (1895) para trabajar como ayudante de JJ. Thomson. En 1898 fue nombrado catedrático de la Universidad McGill de Montreal, en Canadá. A su regreso al Reino Unido (1907) se incorporó a la docencia en la Universidad de Manchester, y en 1919 sucedió al propio Thomson como director del Cavendish Laboratory de la Universidad de Cambridge.

Por sus trabajos en el campo de la física atómica, Ernest Rutherford está considerado como uno de los padres de esta disciplina. Investigó también sobre la detección de las radiaciones electromagnéticas y sobre la ionización del aire producida por los rayos X. Estudió las emisiones radioactivas descubiertas por H. Becquerel, y logró clasificarlas en rayos alfa, beta y gamma.

Ernest Rutherford

En 1902, en colaboración con F. Soddy, Rutherford formuló la teoría sobre la radioactividad natural asociada a las transformaciones espontáneas de los elementos. Colaboró con H. Geiger en el desarrollo del contador de radiaciones conocido como contador Geiger, y demostró (1908) que las partículas alfa son iones de helio (más exactamente, núcleos del átomo de helio) y, en 1911, describió un nuevo modelo atómico (modelo atómico de Rutherford), que posteriormente sería perfeccionado por N. Bohr.
Según este modelo, en el átomo existía un núcleo central en el que se concentraba la casi totalidad de la masa, así como las cargas eléctricas positivas, y una envoltura o corteza de electrones (carga eléctrica negativa). Además, logró demostrar experimentalmente la mencionada teoría a partir de las desviaciones que se producían en la trayectoria de las partículas emitidas por sustancias radioactivas cuando con ellas se bombardeaban los átomos.

Los experimentos llevados a cabo por Rutherford permitieron, además, el establecimiento de un orden de magnitud para las dimensiones reales del núcleo atómico. Durante la Primera Guerra Mundial estudió la detección de submarinos mediante ondas sonoras, de modo que fue uno de los precursores del sonar.

Biografía de James Chadwick

James Chadwick:

(Manchester, 1891 - Cambridge, 1974) Físico inglés, premio Nobel de Física en 1935 por el descubrimiento del neutrón. Estudió bajo la tutela de Rutherford en la Universidad de Manchester, donde se licenció en 1911. Viajó a Berlín para ampliar su formación, esta vez bajo la dirección de Geiger. Sus investigaciones se vieron paralizadas a causa de la Primera Guerra Mundial.

En 1919, Chadwick volvió a Cambridge y prosiguió su colaboración con Rutherford, quien había descubierto en 1917 la desintegración atómica artificial al estudiar el átomo de nitrógeno y continuaba trabajando con otros elementos ligeros. Rutherford había teorizado sobre la existencia de nuevos núcleos atómicos, formados en su concepción por protones y electrones.

En 1932, durante el estudio de una radiación detectada por W. Bothe (1891-1957), logró identificar sus componentes como partículas con una masa equivalente a la del protón, pero carentes de carga, descubriendo así la existencia de los neutrones, componentes del núcleo atómico junto con los protones, y que harían posible el descubrimiento de la fisión atómica. Chadwick dio a conocer sus trabajos en la revista Nature; sin embargo, no se ocupó de la función del neutrón en el núcleo atómico, trabajos de los que se hizo cargo, casi de forma inmediata, el físico alemán Werner Heisenberg, y que supusieron el comienzo de la física cuántica.